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The study of low density, ultracold atomic Fermi gases is a promising avenue to
understand fermion superfluidity from first principles. One technique currently
used to bring Fermi gases in the degenerate regime is sympathetic cooling
through a reservoir made of an ultracold Bose gas. We discuss a proposal for
trapping and cooling of two-species Fermi–Bose mixtures into optical dipole
traps made from combinations of laser beams having two different wavelengths.
In these bichromatic traps it is possible, by a proper choice of the relative laser
powers, to selectively trap the two species in such a way that fermions experi-
ence a stronger confinement than bosons. As a consequence, a deep Fermi
degeneracy can be reached having at the same time a softer degenerate regime
for the Bose gas. This leads to an increase in the sympathetic cooling efficiency
and allows for higher precision thermometry of the Fermi–Bose mixture.

KEY WORDS: Bose and Fermi degenerate gases; superfluidity and supercon-
ductivity; evaporative cooling; sympathetic cooling; nonequilibrium statistical
mechanics; Bose-Fermi mixtures.

1. INTRODUCTION

Superfluidity and superconductivity are phenomena at the heart of
quantum mechanics of many-body systems. Their importance is not limited



to condensed matter physics and some of the concepts involved in their
understanding have been seminal in other contexts, most notably in
quantum field theory. (1) A wealth of experimental informations on macro-
scopic quantum transport has been collected by studying the Bose and
Fermi isotopes of helium in the superfluid phase and the electron liquids in
superconductors. (2) With the advent of Bose–Einstein condensates of dilute
gases consequent to the development of innovative cooling technologies, (3–6)

the class of systems available for studying superfluidity has been enlarged
to many other species, namely various isotopes and hyperfine states of
alkalis as well as atomic hydrogen, metastable helium, and ytterbium.
Besides the richer spectrum of investigable atomic systems, in the case of
dilute gases one can exploit their intrinsically slower dynamics—low densi-
ties imply weak average interactions—to study formation and decay of
interesting structures like vortices, a possibility very hard to achieve in the
denser liquid helium. Moreover, unlike liquid helium, the precision
achievable with atomic physics experimental techniques, and the possibility
to control the theoretical many-body approximations, are two other
reasons which have contributed to the fast development of this sector at the
borderline between atomic and condensed matter physics.

After the pioneering observation of Bose–Einstein condensation (BEC)
in dilute gases of 87Rb, (7) 23Na, (8) and 7Li, (9) a lot of experimental and
theoretical activities have been focused on the signatures of superfluid
behaviour in this novel low-density state of matter (see, for instance,
refs. 10–12). Examples are the formation of vortices by means of opto-
mechanical driving (13) and mechanical stirring, (14, 15) the spectroscopy of
scissor modes, (16) the studies of superfluid flow and the related onset of a
critical velocity. (17, 18) These experimental achievements have been comple-
mented by relatively simple, first-principle theoretical studies with signifi-
cant progress in the comprehension of longstanding issues in liquid 4He,
like critical velocities and vortex formation. (19, 20) Even more interesting is
the study, still completely open from the experimental viewpoint, of super-
fluid features in Fermi dilute gases. (21) The presence of a superfluid phase is
expected to occur in the deep degenerate regime via a sort of atomic
Cooper pairing, (22, 23) on the basis of qualitative analogies to the case of 3He
and, more in general, to high density electron liquids in superconductors.

In this paper we discuss in some length a recent proposal to confine
and cool two-species Fermi and Bose gases in a bichromatic optical dipole
trap. (24) This configuration allows for selective trapping of the two species
with different trapping strengths. Since the confinement determines the
degeneracy conditions, a regime can be chosen such that the Fermi tem-
perature is much larger than the Bose–Einstein condensation temperature.
In this case, a deep Fermi degeneracy could be achieved before (or in

58 Onofrio and Presilla



proximity) of the BEC phase-transition for the Bose component, leading to
various advantages in the search for superfluidity in dilute fermions amidst
a thermal (or thermally-dominated) Bose gas. This would provide an
unprecedented situation as compared to the already available 3He-4He
mixture. In principle, many Fermi–Bose mixtures can be studied. We will
focus the discussion on the best two Bose coolers available, 23Na and
87Rb—the workhorses for Bose–Einstein condensation—and the only two
stable Fermi isotopes for alkali atoms, 6Li and 40K.

The paper is organized as follows. In Section 2 we briefly describe the
experimental techniques specific to the trapping and cooling of Fermi
dilute gases, and then give an updated overview of the current experimental
efforts in reaching Fermi degeneracy. In Section 3 we introduce our pro-
posal by discussing the conservative trapping features in various configu-
rations and for diverse combinations of Fermi–Bose mixtures. In Section 4
we discuss evaporative cooling for the boson species by giving a specific
example of its dynamics in the case of one-color and two-color single-beam
optical dipole traps. In Section 5 we deal with sympathetic cooling, with
particular regard to the limitations to the minimum achievable tempera-
tures induced by the heat capacities of the two species. In the same section,
we discuss qualitatively also some methods to evidence a possible super-
fluid state in the Fermi component, and comment on the advantages of
having a thermal Bose cloud rather than the only Bose condensed compo-
nent. General features of our proposal are summarized and discussed in the
conclusions.

2. STATUS OF THE EXPERIMENTAL SEARCHES FOR

SUPERFLUIDITY IN DILUTE FERMI GASES

As a general consequence of the Heisenberg principle, quantum
degeneracy occurs at temperatures very similar for bosons and fermions in
presence (or absence) of external confining potentials with comparable
strength. It is therefore natural to apply to the Fermi gases the successful
trapping and cooling techniques already developed for bosons and culmi-
nating in the observation of a Bose condensed phase. However, there are
also very striking differences between bosons and fermions in the degener-
ate regime. For instance, fermions enter into a degenerate regime without
the sharp phase transition characteristic of bosons. Also, when dealing with
Fermi systems one has always to face the effects of the Pauli principle
which freezes most of the available degrees of freedom. The effects of the
Pauli principle are particularly felt in all the current experimental efforts to
achieve full degeneracy and to evidence a superfluid phase in Fermi systems
confined by means of magnetic traps. With this trapping technique only
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spin-polarized Fermi gases can be confined and cooling is ultimately
obtained—like in their bosonic counterparts—by the selective removal of
the most energetic part of the atomic cloud allowing for rethermalization
of the remaining fraction. Consequently, since the atoms are polarized in
the same hyperfine state, the Pauli principle forbids the s-wave elastic
scattering. Then rethermalization becomes inefficient at low temperature
where the contribution of odd angular momentum states (like p-wave
scattering) is strongly suppressed, and this limits the efficiency of direct
evaporative cooling among fermions in the same hyperfine state. Two
routes to overcome this limitation have been implemented, dual evapora-
tive cooling of fermions prepared in two different hyperfine states, and
sympathetic cooling with a Bose refrigerant. Even in these situations the
Pauli principle gives limitations, as the elastic scattering between different
hyperfine states is inhibited by the so-called Pauli blocking: (25) the atoms
available to elastic scattering are limited to the Fermi surface and their
number is directly proportional to T/TF . The use of sympathetic cooling
with a boson reservoir is instead obstacled by the superfluidity of the
latter, (26) the fact that the specific heat of the Bose gas quickly vanishes
fot T < Tc , and ultimately by Pauli blocking. As a matter of fact, the
lowest temperatures presently achieved for fermions are limited in the
0.05–0.2 TF range. (27–37)

Concerning the trapping techniques, the use of magnetic traps gives
limitations in the combinatorics of trappable hyperfine states and interferes
with the use of tunable homogeneous magnetic fields required to enhance
atomic scattering via Feshbach resonances as predicted in ref. 38 (see also
ref. 39 for a recent review) and observed in various atomic systems. (40–43)

Feshbach resonances provide a mechanism that could be crucial to identify
signatures of superfluidity even at relatively large temperatures, the so-
called resonant superfluidity. (44–47)

Some of the above mentioned limitations can be overcome by using
optical dipole traps. (48–51) Both different hyperfine states and arbitrary
magnetic fields can be used in this case. Optical dipole traps have been
pursued as a way to obtain quantum degeneracy with purely optical tools,
avoiding the complications of magnetic trapping. (52) After studies on
degenerate Bose gases generated in magnetic traps and then transferred
into optical dipole traps, (53) both BEC (54, 55) and Fermi degeneracy (29) have
been achieved directly in all-optical traps. Also, preliminary studies of
Feshbach resonances for fermions in an optical trap have been reported in
ref. 56. More recently, studies of strongly interacting Fermi gases have been
reported in the case of Fermi–Bose mixtures (57) and two-component Fermi
gases. (58, 59) In the latter case the expansion dynamics has been interpreted
as a possible evidence of resonant superfluidity as predicted in ref. 60.
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Table I. Status of the Experimental Studies of Degenerate Fermi Dilute Gasesa

Atomic species NF T/TF Ref.

40K(9/2, 9/2)-40K(9/2, 7/2) 7×105 0.50 JILA1 (25)
6Li(3/2, 3/2)-7Li(2, 2) 1.4×105 0.25 Rice1 (27)
6Li(3/2, 3/2)-7Li(2, 2) 4×103 0.20 ENS1 (28)

6Li(1/2, 1/2)-6Li(1/2, −1/2) 105 0.50 Duke1 (29)
6Li(1/2, 1/2)-23Na(1, −1) 1.4×105 0.50 MIT1 (30)
40K(9/2, 9/2)-87Rb(2, 2) 104 0.30 LENS (31)

6Li(1/2, 1/2)-6Li(1/2, −1/2) 1.6×105 0.15 Duke2 (32)
40K(9/2, −9/2)-40K(9/2, −5/2) 1.1×106 0.21 JILA2 (33)

6Li(3/2, 3/2)-7Li(2, 2) 7×107 0.10 Rice2 (34)
6Li(1/2, 1/2)-23Na(2, 2) 7×107 0.05 MIT2 (35)

6Li(1/2, −1/2)-6Li(1/2, 1/2) 8×104 0.43 ENS2 (36)

a For each laboratory the various trapped species are reported specifying the particular hyper-
fine state (F, mF), the number of fermions at the final stage of cooling NF, the lowest
reached temperature ratio T/TF, and the related reference. The quoted experiments at JILA
and Duke University make use of dual evaporative cooling of two hyperfine states of mag-
netically trapped potassium and optically trapped lithium, respectively. The other experi-
ments exploit sympathetic cooling with bosonic reservoirs, 7Li, 23Na, and 87Rb. More
recently, sympathetic cooling of 40K with 87Rb has been also pursued at JILA. (37) In sub-
sequent work the Duke University group has reached deeper degeneracy and observed an
anisotropic expansion of the Fermi gas, which could be interpreted as an evidence of super-
fluid behavior of the Fermi gas. (58, 59) More recent experiments use Feshbach resonances,
resulting in high-efficiency production of potassium or lithium ultracold molecules. In the
experiment described in ref. 34 the Fermi–Bose mixture is an intermediate stage, then all the
bosons are removed and the fermions are prepared in an incoherent mixture of equal popu-
lations in the (1/2, −1/2) and (1/2, 1/2) states.

The experimental situation, updated to the Summer 2003, is summa-
rized in Table I.

The two stable fermionic species 6Li and 40K have been cooled by
using evaporative cooling between two hyperfine states (JILA and Duke
University) or through sympathetic cooling with Bose condensates of 7Li,
23Na, and 87Rb (Rice-ENS, MIT, and LENS respectively). It is evident
that, despite of very different trapping and cooling techniques, the lowest
degeneracy parameter T/TF obtained by using sympathetic cooling is
around 0.2 (for the particular case of MIT2 see a detailed discussion in
Section 5). The existence of this sort of lower bound for T/TF can be
understood semiquantitatively in the following way. (61) In the latest stage of
evaporative cooling the number of Bose atoms becomes of the same order
of magnitude of the number of Fermi atoms (in some hyperfine states of
7Li, due to the negative scattering length, there is also a theoretical upper

Ultracold Atomic Fermi–Bose Mixtures in Bichromatic Optical Dipole Traps 61



limit to the number of atoms in the condensed phase, see ref. 9). On the
other hand the boson specific heat scales as T3 below the BEC transition,
while the Fermi atoms have specific heat scaling as T. The specific heat
curves of bosons and fermions, assuming for simplicity equal masses for
the two species, intersect each other at a temperature Tg ’ 0.5 Tc ’ 0.25 TF.
Below Tg sympathetic cooling becomes very inefficient. This simple expla-
nation gives also an hint on how to overcome the limitation. If one could
engineer the trapping potential in such a way that Tc ° TF, the Bose gas
would preserve enough thermal capacity to drive the sympathetic cooling
even in a deep degenerate regime for the Fermi component. A first attempt
in this direction can be found in ref. 62, where adiabatic compression was
proposed in an optical dipole trap superimposed to an already confining
magnetic trap. This should allow a small fraction of the Fermi atoms to
experience a very tight confinement potential, thus enhancing the Fermi
temperature. More recently, we have proposed an alternative solution in
the context of pure optical trapping, (24) by using a two-color optical dipole
trap which confines both Fermi and Bose gases with different strengths. It
is the purpose of the next Section to discuss in detail the static confinement
features of this class of atomic traps.

3. TWO-COLOR OPTICAL DIPOLE TRAPS

Let us start our analysis from the conditions of degeneracy for Fermi
and Bose gases confined in harmonic traps. The Fermi and Bose tempera-
tures for dilute atomic clouds trapped by harmonic potentials can be
written as:

TF=61/3(wFN
1/3
F k

−1
B 4 1.82(wFN

1/3
F k

−1
B (1)

Tc=z(3)−1/3 (wBN
1/3
B k

−1
B 4 0.94(wBN

1/3
B k

−1
B (2)

with wF=(wfxwfywfz)1/3 and wB=(wbxwbywbz)1/3 being the geometrical
average of the angular trapping frequencies in the three directions for fer-
mions and bosons, NF and NB the number of atoms of the Fermi and Bose
gases, and ( and kB the Planck and Boltzmann constants, respectively.

Besides the small difference in the prefactor, the degenerate tempera-
tures for Fermi and Bose atoms per unit of atom are similar in traps with
the same angular trapping frequencies for the two species. This is indeed
the case of magnetic traps: since the magnetic moments of the alkali-metals
are very similar, the only difference in the trapping strengths is due to
their different masses, with the angular trapping frequencies scaling as
wF/wB 4 (mB/mF)1/2. The situation may change in optical dipole traps
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Fig. 1. Combined optical dipole trap for two-species mixtures. Case of a single beam con-
figuration (left) with the two color beams propagating in a coaxial fashion, and of a coplanar
crossed-beam dipole trap (right) with relative angle between the two beam pairs h=0. The
lenses are assumed to be achromatic to ensure a common focus for the collimated beams at
different wavelengths.

where the confinement is dictated by the detunings of the laser beams with
respect to the atomic transitions and by the beam intensities. Situations for
which Fermi degeneracy is reached before BEC (i.e., TF > Tc) are therefore
viable, provided that fermions and bosons have different atomic transi-
tions. This will restrict our analysis to two-species mixtures, since the iso-
topic shifts are usually not enough to ensure selective trapping in single
species Fermi–Bose mixtures without incurring in prohibitive heating due
to residual Rayleigh scattering.

In discussing optical dipole traps, one can consider either single beam
or crossed-beam configurations, (52) see Fig. 1. The former has the advan-
tage of being simpler with fewer experimental problems of loading and
alignment, the latter gives rise to a more isotropic confinement. In the
following, we will discuss in detail the crossed-beam geometry. Results for
the single beam configuration will be obtained as a particular case in which
one of the two beams is turned off.

In the crossed-beam configuration, a pair of laser beams red-detuned
with respect to the atomic transitions and focused on the center of the pre-
existing trapping potential (for instance the one generated by the magneto-
optical trap typically used for precooling the atomic clouds), gives an
effective attractive potential for both the species. This attractive potential is
partially balanced by a second pair of mutually orthogonal blue-detuned
laser beams, acting for instance along the same plane formed by the red-
detuned beams and forming with the latter an angle h. This second pair of
beams gives rise to a repulsive potential and, by a proper choice of its
detuning and power, provides a selective deconfinement for the two species.
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The potential generated by the dynamical Stark effect, felt by an atom
of species a (a=b for bosons, a=f for fermions) whose atomic transition
wavelength and linewidth are respectively la and Ca, and due to the laser
beams i of wavelength li and intensity Ii (i=1, 2 for the red-detuned and
blue-detuned laser beams, respectively), is (48)

Uai (x, y, z)=−
(C2a
8I sata
1 1
Wa−Wi

+
1

Wa+Wi
2 Ii(x, y, z), (3)

where Wa=2pc/la, Wi=2pc/li, and I sata is the saturation intensity for the
atomic transition, expressed in terms of the former quantities as I sata =
(W3aCa/12pc

2. It is easy to recognize that the potential energy has the same
sign of the laser intensity if Wi > Wa, i.e., for blue-detuned light. Then the
atoms, trying to minimize their potential energy, move towards the regions
of space with minimum light intensity, and therefore are expelled by the
laser beam. The opposite occurs for red-detuned light, for which the atoms
are attracted in the regions of maximum light intensity.

The laser intensity is the incoherent sum of the intensities of each pair
of beams (such incoherent sum can be obtained by orthogonal polariza-
tions or by slight detuning of the beams within each pair), all focused at the
origin of the trap. If we assume that the red-detuned beams propagate
along the x-y axes while the blue-detuned beams propagate along the
t-g axes possibly rotated by an angle h, i.e., t=x cos h+y sin h,
g=y cos h−x sin h, with 0 [ h < p/4, the intensities can be written as

I1(x, y, z)=
2P1
pw21

˛exp 5− 2(y2+z2)
w21(1+x

2/R21)
6

1+x2/R21
+

exp 5− 2(x2+z2)
w21(1+y

2/R21)
6

1+y2/R21

ˇ
(4)

I2(x, y, z)=
2P2
pw22

˛exp 5− 2(g2+z2)
w22(1+t

2/R22)
6

1+t2/R22
+

exp 5− 2(t2+z2)
w22(1+g

2/R22)
6

1+g2/R22

ˇ
(5)

where Pi is the laser power, wi is the 1/e2 beam waist radius, and
Ri=pw

2
i /li the Rayleigh range. The quantity 2Pi/pw

2
i=Ii(0, 0, 0) repre-

sents the peak laser intensity due to each pair of beams, obtained in the
focal point.

The overall potential felt by the fermions (bosons) is UF=U
f
1+U

f
2

(UB=U
b
1+U

b
2 ). For a proper choice of the laser powers, these potentials

are energy wells with depths DUF and DUB which constitute the confining
energies of the fermionic and bosonic species. The curvatures around the
minimum of these potentials determine the trapping frequencies wF and wB

64 Onofrio and Presilla



and, consequently, the critical temperatures TF and Tc. Up to quadratic
terms, the potentials UF and UB are invariant under rotations around the
minimum so that the trapping frequencies do not depend on the angle h.
By neglecting the terms (li/pwi)2° 1, we find

wax=way=
waz

`2
== (

pma
1ka1P1
w41
+
ka2P2
w42
2 , (6)

where the constants kai have been introduced as

kai=
C2a
I sata
1 1
Wa−Wi

+
1

Wa+Wi
2 . (7)

Analogous expressions can be obtained in the case of a single-beam geom-
etry. For instance, by considering a single beam propagating along the
x-axis we have

wax==
(

pma
1 ka1P1
w21R

2
1

+
ka2P2
w22R

2
2

2 , (8)

waz=way==
(

pma
1ka1P1
w41
+
ka2P2
w42
2 . (9)

Since typically wi ± li and, therefore, Ri ± wi, the confinement along the
x-direction is weakened leading, with respect to the crossed-beam configu-
ration, to an overall reduction of the average angular frequencies for the
trapped species. In the particular case of equal ratios between wavelengths
and waists for the two colors, l1/w1=l2/w2=l/w, this reduction
amounts to (l/2pw)1/3.

In Fig. 2 we show the dependence of the optical potential upon the
radial, x or y, and axial, z, directions in the two-beam geometry for the
case of the 6Li-23Na mixture. When the ratio between the power of the blue-
and red-detuned lasers is small (P2/P1=0.05, upper panels) the deforma-
tions induced by the blue-detuned beam are negligible. The difference in
curvature between the two species is mainly attributable to the difference in
mass ma and detuning with respect to the laser beam, both playing a role
in favoring Tc smaller than TF. Also, the depth of the potential well for the
bosonic species is smaller than that for the fermions. This makes possible
to exploit evaporative cooling without appreciable interference from the
Fermi cloud. It is also evident that the stronger confinement in the radial
direction is achieved for coaxial beams, i.e., h=0. The axial confinement
along the z axis is instead unaffected by the rotation angle between the
beam pairs. In the case of a strong perturbation, lower panels of Fig. 2
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Fig. 2. Potential energies in the case of the 6Li-23Na mixture in a bichromatic optical dipole
trap in a crossed-beam geometry formed by focusing a Nd:YAG laser beam (l1=1064 nm)
and a blue-detuned laser beam at its second harmonic (l2=532 nm). In the two upper panels
the potential energy for the atoms of the two species is shown along the radial, x or y, and
axial, z, directions for a power ratio P2/P1=0.05. The four curves in the radial directions
refer to various angles (h=0, p/16, p/8, and p/4 from top to bottom) between the two pairs
of beams. In the two lower panels the case of a larger power ratio, P2/P1=0.25, is considered.
The beam waists are w1=w2=8 mm, and P1=1W. Note that while the potential vanishes
with a purely Gaussian behaviour in the axial direction z, along x (and y) first it varies in a
Gaussian way (to half of its peak value for h=0) and finally vanishes as a Lorentzian (not
shown). The Gaussian and Lorentzian widths are determined by the beam waists and the
Rayleigh ranges, respectively.

where P2/P1=0.25, the bosonic species is much less confined and there is a
strong difference in the curvature of the energy potential with respect to the
fermionic species.

In both crossed- or single-beam configurations, the confinement
energy of the boson species vanishes as the power ratio P2/P1 approaches a
critical value. Approximately, this can be obtained by Eq. (6) or Eqs. (8)
and (9) as the P2/P1 value at which the average trapping frequency of
bosons vanishes. In both cases, we find

P2
P1
:
crit
=
W22−W

2
B

W2B−W
2
1

1w2
w1
24. (10)
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Fig. 3. Selective trapping of bosons and fermions. The ratio between the average trapping
frequencies for the fermionic and bosonic species is shown versus the beam power ratio
between the blue- and red-detuned lasers. The cases of single beam (dashed lines) and crossed
beam (solid lines) geometries are depicted for the Li-Na, Li-Rb, K-Na, and K-Rb mixtures.
The vertical lines are the critical values P2/P1 given by Eq. (10). Parameters chosen according
to the values in Table II.

The behavior of the trapping frequency ratio wF/wB as well as of the
trapping energies DUF and DUB as a function of the power ratio P2/P1 is
shown in Figs. 3 and 4 also for different Fermi–Bose mixtures, obtained by
using fermionic 40K and bosonic 87Rb, as summarized in Table II.

Table II. Wavelenghts and Linewidths of the Atomic Transitions for the Fermion-

Boson Mixtures Considered in the Text and Wavelength of the Corresponding

Deconfining Laser with a Nd:YAG Laser at l1=1064 nm Producing the Primary

Trapping Potential

mixture lF (nm) CF (MHz) lB (nm) CB (MHz) l2 (nm)

6Li-23Na 671 2p×5.9 589 2p×9.8 532
6Li-87Rb 671 2p×5.9 780 2p×5.98 740
40K-23Na 767 2p×6.09 589 2p×9.8 532
40K-87Rb 767 2p×6.09 780 2p×5.98 773.5
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Fig. 4. Selective trapping of bosons and fermions. Confining energy per unit of infrared
laser power as a function of the beam power ratio between the blue- and red-detuned lasers.
The confining energy is evaluated with respect to the region of space delimited by the waist
size (see also note in the caption of Fig. 2). Continuous lines refer to the crossed-beam con-
figuration, while dashed lines are for the single-beam optical dipole trap.

The trapping frequency ratio for the single-beam geometry is always
reduced with respect to the corresponding crossed-beam case at the same
power ratio P2/P1. This decrease, which is a consequence of the weaker
confinement along the direction of the laser beam, can be compensated by
a larger power ratio, provided that the beam intensities are adequately
stabilized. From the upper panels in Fig. 4 we see that, with the chosen
values of the blue-detuned laser wavelength, the bosonic sodium atoms are
always less confined than the fermionic atoms. This allows one to apply
evaporative cooling techniques for the bosonic species while having
negligible losses in the number of fermions. For the mixtures utilizing 87Rb,
the confining energy is initially higher for the Bose species (especially for
the Li-Rb mixtures), however the fermionic confining energy increases as
the laser power P2 is increased, since the potential created by the blue-
detuned light is in this case attractive for fermions (l2 > lF). For these
mixtures, therefore, the addition of the laser light deconfining the bosons
improves at the same time the confinement features of the fermionic species
and minimizes the losses of Fermi atoms at the beginning of evaporation.
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Note also that for all the mixtures considered, within a very good approx-
imation the bosonic confinement energies DUB in Fig. 4 vanish at the same
critical values P2/P1 at which the ratios wF/wB in Fig. 3 diverge.

Some further comments are in order. In the case of equal waists, the
potential felt by the bosons is exactly zero at the critical power ratio and
changes curvature at larger values giving rise to deconfinement, see middle
panel of Fig. 5. By choosing w2 < w1 (top panel of Fig. 5), the potential
becomes bistable for P2/P1 around the critical value. Then, the blue-
detuned laser can be used to produce tailored bistable potentials, providing
an alternative route to the recently demonstrated all-magnetic bistable
potentials. (63) For w2 > w1 (bottom panel of Fig. 5), the potential is always
globally deconfining but a local minimum around the origin is assured if
P2/P1 is close to the critical value. The strong dependence of the critical
power ratio upon the beam waists can be used to reduce the amount of

Fig. 5. Bosonic potential energy along the z-axis in the case of the 6Li-23Na mixture in a
crossed-beam bichromatic optical dipole trap for P2/P1 5% smaller (solid), equal (dashed),
and 5% larger (dot-dashed) than P2/P1 |crit. The three panels refer to waist ratios w2/w1=0.9
(top), w2/w1=1 (middle), and w2/w1=1.1 (bottom).
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blue-detuned light necessary to approach the targeted values of wF/wB.
However, based on the above mentioned considerations, there is a tradeoff
since we may have also a change of the potential shape.

A possible technical issue is the demand for an initial large laser power
especially since it is difficult to get sub-Doppler cooling for Li and K due
to the small hyperfine splittings of the p3/2 atomic level (64) (see, however,
ref. 65 for a successful demonstration of sub-Doppler cooling of 40K). Up
to now, Nd:YAG laser powers with built-in crystals for frequency-doubl-
ing are limited to about 1 W. This corresponds to order of 500 mK for the
initial potential depth, i.e., four times the initial temperature of the cloud if
the latter is transferred from a Doppler-limited magneto-optical trap. As
we will discuss in the next section, this could be an issue for starting effi-
cient evaporative cooling. Besides awaiting progress in the power deliver-
able by semiconductor-based lasers, one can use independent systems for
red- and blue-detuned light (this seems anyway unavoidable for mixtures
utilizing 87Rb as the Bose cooler). High power, far detuned CO2 lasers are
also available to produce quasi-static optical dipole traps. (66, 67) This tech-
nique has been recently demonstrated for cooling fermionic lithium at
degeneracy temperature (29) after efficient loading from a magneto-optical
trap. (68, 69) CO2 lasers allow for large powers (order of 100–200 W) and,
since they are well detuned from the atomic resonances, for very small
heating due to photon scattering. (70) In Fig. 6 we show the selective trap-
ping features of a K-Na mixture with the Nd:YAG laser replaced by a
CO2 laser emitting at 10.6 mm. At such large wavelengths the optical

Fig. 6. Selective trapping with a CO2 laser in the case of the K-Na mixture. Trapping
frequency ratio (left) and confinement energy (right) versus the parameter P2/P1. The dashed
curves refer to the single-beam configuration, the continuous ones to the crossed-beam geom-
etry. The different critical values of P2/P1 obtained from the left and right panels are due to
the fact that the harmonic approximation used to evaluate wF/wB fails for P2/P1 large enough
(the potential becomes bistable since w2 < w1). The waist of the CO2 laser beam is assumed to
be w1=50 mm, while w2=10 mm.
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potential is well approximated by the induced dipole interaction
U=−agE2/2, where ag is the ground state polarizability and E2 is the time-
averaged squared electric field. (66) In terms of the laser intensity the optical
potential is

U(x, y, z)=−
2pag
c
I(x, y, z). (11)

Due to the high static atomic polarizability of rubidium (aRbg =47.3×
10−24 cm3), this bosonic species is more strongly confined than fermionic
potassium (aKg=43.4×10

−24 cm3) and lithium (aLig=24.3×10
−24 cm3),

therefore ruling out evaporation as a possible cooling technique for K-Rb
and Li-Rb mixtures. Also, the combination Li-Na has to be discarded due to
the small static atomic polarizability of sodium (aNag =24.08×10

−24 cm3).
Thus, a CO2 laser can be effectively used for a red-detuned attractive poten-
tial only in the case of the 40K-23Na mixture considered in Fig. 6.

4. EVAPORATIVE COOLING

So far we have considered the static trapping features of the two-color
optical dipole configuration schematized through a time-independent
potential. However, to reach quantum degeneracy, the phase space density
has to be increased, e.g., by cooling down the atomic sample. In the con-
figuration proposed here this is obtained through two continuous processes:
forced and selective removal of bosonic atoms with re-thermalization of the
surviving component (evaporative cooling), (6) and thermalization of the
fermionic species to the temperature of the Bose gas (sympathetic cooling).
These cooling processes have various limitations, the most obvious one
being the reduced heat capacity of the bosonic sample undergoing a con-
tinuous decrease of atoms. Moreover, concurrent heating sources will limit
the ultimate reachable temperature, most notably the residual Rayleigh
scattering from the trapping beams. In this Section we discuss to some
extent these issues and, although not pretending to go into full details on
the many possible experimental schemes, we give estimates of the relevant
parameters involved in the cooling dynamics for a specific example.

Evaporative cooling in an optical dipole trap has been the subject of
various experimental and theoretical studies. (52, 54, 71) The atomic evapora-
tion rate in finite-depth traps is exponentially dependent upon the ratio
between the potential depth of the trap and the average thermal energy of
the atomic cloud, DU/kBT, since the number of atoms in the tail of the
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Boltzmann distribution scales as exp(−DU/kBT). Forced evaporation is,
therefore, necessary to maintain a significant evaporation rate, which
should be otherwise exponentially quenched by reducing the cloud tem-
perature. It can be demonstrated (71) that all the relevant quantities involved
in forced evaporative cooling in an optical dipole trap scale with some
power of the confining energy, provided that the ratio between the latter
and the cloud temperature is constant in time DU/kBT=g. In this case, the
confining energy has a time dependence of the form

DU(t)
DUi

=11+t
y
2 eU, (12)

where DUi is the initial potential depth, eU=−2(g −−3)/g −, and y−1=
(2/3) g −(g−4) exp(−g) ci, with g −=g+(g−5)/(g−4) and ci being the
initial value of the elastic collision rate c. Similar laws hold for the time
dependence of the number of particles N, temperature T, phase-space
density r, and elastic collision rate c with corresponding exponents eN, eT,
er, and ec.

With respect to the simplest case of a single Bose species undergoing
evaporative cooling in an optical dipole trap we have two differences. First,
there is a mixture also containing the Fermi atoms. Their presence does not
significantly affect evaporative cooling of the Bose gas if the potential
energy depth DUF is much larger than DUB, a condition well satisfied in the
situations we consider—see Fig. 4. Also, in order for the Bose gas to act as
a cooler its heat capacity must be much larger than the heat capacity of the
fermionic species. This is possible, at least in the earlier stages of evapora-
tion before entering the degenerate regime, by assuming a number of
bosons much larger than the number of fermions. In bichromatic traps, a
further problem may arise due to the presence of the blue-detuned laser
which weaken the confinement of both species, particularly the bosonic
one. As the atomic densities are decreased, all the density-dependent scat-
tering rates, in particular the elastic one which is crucial for thermalization
of the surviving atoms, are also suppressed. (72)

The lower densities and the slower thermalization at lower tempera-
tures makes more difficult to achieve high phase-space densities, an issue
which has limited for various years the effort to make an all-optical for-
mation of Bose–Einstein condensates. (73) From this point of view, in a
bichromatic trap it is convenient to turn on the blue-detuned beam only
when it can give an effective advantage, i.e., close to the Fermi degenerate
regime. Once on, the power of the blue-detuned beam must be chosen in
such a way to maintain a fixed ratio with respect to that of the red-detuned
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Fig. 7. Evaporative cooling strategies in bichromatic optical dipole traps. The time depen-
dence of the laser powers (top panels), the averaged frequencies (center panels), and the
bosonic elastic scattering rates (bottom panels), are depicted for single-beam (left) and crossed-
beam (right) configurations and a 6Li-23Na mixture. The red-detuned beam is obtained with a
Nd:YAG laser emitting at l1=1064 nm with a peak power P1=100 W. For cit > 400, the
ratio between the blue- and red-detuned laser powers is kept at the constant value
P2/P1=0.32. In the case of the single-beam configuration there is a significant decrease in the
bosonic trapping frequency, while in the crossed-beam configuration a further gain through
the increase of the fermionic trapping frequency is also evident. The large elastic scattering
rates available during the entire evaporation process allows for a fast dynamics of thermaliza-
tion of the Bose gas. We assume equal waists for the beams, w1=w2=8 mm. The initial laser
power is enough to have g=10 for a 23Na cloud consisting of NB=106 atoms transferred
from a magneto-optical trap at temperature T=586 mK (crossed-beam) or T=222 mK (single-
beam), thermalized with a 6Li cloud with NF=105 atoms.

beam. Meanwhile the power of the red-detuned beam is decreased contin-
uously to allow efficient forced evaporation of the bosonic species. An
example of this cooling strategy is shown in Fig. 7.

The constant power ratio P2/P1 must be chosen carefully as a com-
promise between increasing the fermion-to-boson trapping frequency ratio
and not decreasing too much the absolute frequencies, as this will decrease
all the elastic scattering rates crucial for interspecies and intraspecies
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thermalization. In fact, the elastic collision rate for indistinguishable
bosons is given by

c=NBmBw
3
BsB/2p

2kBT, (13)

where sB=8pa
2
B is the boson elastic cross-section expressed in terms of the

boson s-wave elastic scattering length aB. The value of c during the cooling
strategies described here is shown in the bottom panels of Fig. 7.

If the technical noise and heating sources are properly reduced and the
residual background pressure is low enough, the ultimate heating source is
set by residual Rayleigh scattering from the laser beams. This depends on
various parameters, most notably the laser intensity and the detuning of
the laser beam from the atomic resonance, and the corresponding rate
reads

cai (x, y, z)=
C3a
8
1Wi
Wa
23 1 1
Wa−Wi

+
1

Wa+Wi
22 I(x, y, z)

I sata
. (14)

In the following we will estimate the peak Rayleigh scattering rate, i.e., the
value corresponding to the peak laser intensity in the center of the trapping
potential, per unit of power of the laser beams in the case of the 6Li-23Na
mixture used in ref. 30. The time dependence of the Rayleigh scattering rate
can then be inferred by properly scaling the curves for the laser powers
shown in Fig. 7. As expected, the strongest source of heating comes from
the blue-detuned laser beam acting on the sodium atoms. This is of less
concern because the blue-detuned laser beam is turned on only during the
latest stage of evaporation, and then raised to a fraction of the red-detuned
laser beam. The residual Rayleigh scattering rate is estimated to be around
1.2×10−2 Hz, much smaller than the estimated elastic collisional rate, and
corresponds to lifetimes well in excess of 10 s. A similar situation occurs
also for the 40K-23Na mixture. As shown in Table III, due to the proximity
of the atomic transitions for 6Li or 40K and 87Rb instead, the Rayleigh
scattering rates due to the deconfining beam seems prohibitive. However,
the large Rayleigh scattering rate per unit of power for the 40K-87Rb
mixture is less frightening since this mixture has also a critical power ratio
smaller by one order of magnitude with respect to the other ones, if equal
waists are assumed.

The lifetime estimated for 6Li-23Na is long enough to perform various
experiments aimed at evidencing superfluidity features, such as mechanical
stirring or generation of collective excitations.
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Table III. Estimate of the Rayleigh Scattering Rates per Unit of the Corresponding

Laser Power for the Fermion-Boson Mixtures Considered in the Text. The Laser

Wavelengths Are the Same as in Table II and the Beam Waists Are Chosen as

w1=w2=8 mm

mixture c f1 (Hz) c f2 (Hz) cb1 (Hz) cb2 (Hz)

6Li-23Na 0.94 12.5 0.8 63
6Li-87Rb 0.94 31 4.7 306
40K-23Na 4.7 7.8 0.8 63
40K-87Rb 4.7 9.4×103 4.7 1.1×104

5. SYMPATHETIC COOLING AND POSSIBLE EVIDENCES FOR A

FERMIONIC SUPERFLUID PHASE

The study of the dynamics of evaporative cooling is a prerequisite to
discuss sympathetic cooling of fermions through their interactions with the
Bose gas. Heat exchange between two ensembles is perhaps the most
widespread thermodynamic process occurring in nature. Thus, as a general
method to refrigerate an atomic or molecular ensemble whose direct
cooling is difficult to achieve, one can spatially and temporally overlap it
with a colder ensemble, the so-called sympathetic cooling. This process has
been first demonstrated at the microscopic level for trapped ions, (74) then
for neutral atoms and molecules via use of cryogenically cooled helium
gas. (75) More recently, with the advent of ultracold atomic physics, sym-
pathetic cooling in the microkelvin and nanokelvin ranges has been
achieved for bosons in different internal states, (76) in different isotopes, (77)

and for different species. (78)

The elastic scattering properties among fermions and bosons at very
low temperatures, which strongly influence the efficacy of sympathetic
cooling, are starting to be collected for various atomic mixtures. (30, 31) One
potential problem common to all the mixtures is the diminished heat
exchange capability of bosons when approaching condensation. In particu-
lar, fermions can be considered as impurities in the boson cloud and below
Tc the Bose gas has a condensed fraction which is expected to be superfluid.
Based on the Landau criterion for the critical velocity in a superfluid, we
do expect Fermi–Bose collisions to be suppressed when the Fermi velocity
becomes smaller than the sound velocity of the Bose gas. (26) This has been
also experimentally demonstrated. (79) The Fermi velocity, defined by
kBTF=mFv

2
F/2, can be expressed in terms of the trapping parameters as

vF=1.91 1
(wF

mF
21/2N1/6F . (15)
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On the other hand, the sound velocity vs for the Bose gas can be written in
terms of the chemical potential as m=mBv

2
s leading, in the Thomas–Fermi

limit, to

vs=1.22 1
(
2w3BaBNB
m2B
21/5, (16)

where aB is the boson s-wave scattering length. The vF/vs ratio is, therefore,

vF
vs
=1.57 1 (

mBwBa
2
B

21/10 1mB
mF
21/2 1wF

wB
21/2N1/6F
N1/5B

. (17)

The following remarks are in order: (a) the velocity ratio (17) scales
with the square root of the trapping frequencies, so that it helps to have
wF/wB ± 1 to avoid suppression of Fermi–Bose scattering; (b) the velocity
ratio also depends upon the number of fermions and bosons. If the former
are kept constant in the trap and the latter undergo evaporative cooling,
the velocity ratio is increased; (c) the ratio vF/vs is already large for con-
ventional single-color optical dipole traps. For instance, if wB=2p×104 s−1

and NF=NB, for a 6Li-23Na mixture we have vF/vs 4 7.2. In this case, the
loss of cooling efficiency becomes relevant for fermion velocities v M vF/7.2
corresponding to T/TF M 2×10−2. It seems therefore that this mixture will
hardly enter into the regime where superfluid suppression of impurity scat-
tering is significant.

A more stringent limitation to sympathetic cooling is instead set by the
classical heat exchange between bosons and fermions. In Fig. 8 we show
the dependence of the ratio between the heat capacities for the Bose and
the Fermi species, CB/CF, in bichromatic traps with single and crossed-
beam configurations. This gives us a picture of the efficiency of sympathe-
tic cooling since this process breaks down when the ratio CB/CF becomes
of the order of unity. The heat capacities have been evaluated numerically
as described in Appendix A taking into account the time dependence of the
various parameters, in particular the diminishing number of bosons during
forced evaporation. The effect of many-body interactions on the heat
capacity of bosons, evaluated in ref. 80, is next-to-leading with respect to
the dependence upon the number of bosons. We see that in the bichromatic
traps considered here the heat capacity of the bosons is always larger than
that of the fermions by an order of magnitude.

In Fig. 8 we also show the temperature ratios T/TF and T/Tc. In both
single- and double-beam cases, it is possible to reach T/TF < 10−1 while for
the Bose gas T/Tc > 5×10−1, with some slight advantages in the crossed-
beam configuration. This means that, with respect to a monochromatic
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Fig. 8. Efficiency for sympathetic cooling of Fermi–Bose mixtures in bichromatic optical
dipole traps. In the top panel the ratio between the heat capacities of bosons and fermions
CB/CF is shown versus time for the evaporative cooling strategies chosen in Fig. 7 for single-
beam (dashed) and crossed-beam (solid) configurations. The time evolution of the temperature
ratios T/TF and T/Tc is shown for the single-beam (center panel) and crossed-beam (bottom
panel) configurations.

optical dipole trap, a more substantial Bose thermal cloud can be sustained
while the Fermi gas is in a deeper degenerate regime. In the various exper-
iments reaching the Fermi degenerate regime, the estimate of the tempera-
ture is usually obtained by fitting the surviving normal Bose component.
As the temperature is lowered, the thermal component shrinks in amplitude
and size, and the fit to assess its temperature is less accurate. This effect is
mitigated in our bichromatic traps thus allowing for a more precise ther-
mometry.

Simple estimates for the minimum degeneracy parameter Tg/TF can be
obtained by extending the qualitative discussion reported in the concluding
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Fig. 9. Specific heats of a system of N noninteracting bosons (left panel) and fermions (right
panel) in a harmonic trap as a function of the normalized temperatures T/Tc and T/TF. We
have chosen wx=wy=wz/`2 as in a crossed-beam optical dipole trap.

part of Section 2. Below Tc the heat capacity of an ideal Bose gas can be
written as (81)

CB 4 10.8kBNB 1
T
Tc
23 (18)

while for T/TF [ 0.5 with a good approximation the heat capacity of a
Fermi gas is linearly dependent on the temperature (see also Fig. 9) (82)

CF 4 p2kBNF
T
TF
. (19)

By taking the ratio of CB and CF and observing that according to Eqs. (1)
and (2) Tc can be expressed in terms of TF, we obtain the degeneracy
parameter T/TF as

T
TF

4 0.35 1wB
wF
23/2 1CB

CF
21/2. (20)

In a conservative scenario we can assume that sympathetic cooling stops
when CB 4 CF. In this case, for wF/wB 4 1 (as in the case of the 6Li-7Li
mixture) we get a minimum value of the degeneracy parameter at the end
of the cooling as Tg/TF 4 0.35. If cooling is still possible for CB < CF more
optimistic estimates can be given. For instance if cooling stops when
CB/CF 4 0.1, then Tg/TF 4 0.11. By using a larger wF/wB ratio the Tg/TF
ratio decreases according to (20). It is interesting to note that the depen-
dence is quite sensitive to the frequency ratio, and even minor deviations of
this ratio from unity result in an observable effect. For instance, in a mag-
netic trap with a 6Li-23Na mixture we have wF/wB 4 (mB/mF)1/2 4 1.96
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and therefore we estimate, for CB/CF=0.1, a value Tg/TF=0.04, very
close to the minimum value T/TF=0.05 recently obtained by the MIT
group for a complete evaporation of the Bose component. (35)

Superfluidity of the Fermi gas is expected below the critical tempera-
ture for the onset of atomic Cooper pairs (22, 23)

TBCS=
5
3e
e−p/2kF |aF |TF, (21)

where kF is the Fermi wavevector such that EF=(2k
2
F/2mF, and aF is the

fermion-fermion elastic scattering length. Besides leaving freedom to apply
arbitrary homogeneous magnetic fields to enhance the scattering length
through tuning to a Feshbach resonance, (44, 45, 47) as demonstrated experi-
mentally for Fermi gases in refs. 56 and 57, our bichromatic configuration
allows also for an independent increase of kF due to the higher achievable
densities. The resulting TBCS/TF are within the accessible range which cor-
responds, as seen in Fig. 8, to T/TF N 3×10−2. The use of optical trapping
also leads to a large absolute value of the Fermi temperature which can be
otherwise obtained by magnetic trapping only with particular geometries
maximizing the field gradients. (83) Finally, the presence of the Bose gas
could allow for enhancements of the BCS pairing temperature since bosons
can mediate phonon-exchange between fermions in a way analogous to
ordinary superconductors.(84, 85)

In general, with the technique discussed above new mixtures consisting
of a normal Bose gas (or a Bose condensed gas coexisting with a large Bose
thermal fraction) and a degenerate Fermi gas are viable. This contrasts the
only situation known so far of a 3He-4He mixture where degeneracy is
reached earlier for the bosonic species. One of the advantages of using
such an anomalous mixture is the possibility to have a well controllable
background—a normal Bose gas—superimposed to the Fermi gas. This
considerably simplifies the possible signatures of a superfluid phase transi-
tion in a Fermi gas. For instance it should possible to look at a bulge in the
density distribution as predicted in ref. 46, since this is obtained admist a
smooth, low density and well controllable thermal cloud instead of a higher
density and peaked condensate. (86) The presence of a superfluid state could
be evidenced also by using the same blue-detuned beam as a mechanical
stirrer for the fermion cloud. In this case one should look at a finite
threshold for the onset of a dissipative motion or a drag force. (17, 18) The
presence of the bosonic thermal cloud (or a condensate component) gives
rise to heating for all stirring velocities (or above a critical velocity depend-
ing upon the condensate density) of the laser beam. (87) However the con-
tribution of the thermal cloud to the heating is very low, and much smaller
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than the Rayleigh scattering in the relevant range of stirring velocities, due
to the low density. In order to better discriminate heating coming from the
Bose component, one could also take advantage of the proposed mani-
pulation of an ultracold cloud with Raman beams (88, 89) to create a direc-
tional critical velocity for the Fermi component. Another advantage of a
Fermi–Bose mixture with the latter component in the normal state is the
possibility to perform experiments on scattering from microscopic impuri-
ties (such as the one described in ref. 79 for a Bose condensate) in a much
simpler way than using two isotopes.

The presence of the Bose cooler in the non-condensed phase allows
one to re-examine also species for which Bose condensation has been
proven difficult to achieve, like cesium (see however the recent achievement
of BEC in Cs with purely optical means (55)). For instance, one can recon-
sider the use of 133Cs (90) which, due to its large mass and small recoil tem-
perature, can be efficiently cooled to very low temperature in a magneto-
optical trap. This would ensure robust initial conditions, in terms of initial
number of atoms and initial temperature, to start an efficient evaporative
cooling in the optical dipole trap. Even if sympathetic cooling is less effi-
cient due to the large mass ratio with the Fermi species, (91) the same feature
is an advantage in terms of ratio between the trapping frequencies even at
zero blue-detuned beam intensity or in a purely magnetic trap. Recently,
sympathetic cooling of 7Li through 133Cs has been demonstrated in a far-off
resonance optical trap. (92) A CO2 laser was used to create the optical
potential obtaining, due to the static atomic polarizabilities, a larger energy
depth for 133Cs. As a consequence the 7Li went under simultaneous sym-
pathetic and evaporative cooling. The problem can be circumvented by
using a Nd:YAG laser as the primary, red-detuned trapping laser, and a
deconfining beam with wavelength in between the two atomic transition
wavelengths. Furthermore, by relaxing the requirement for using an alkali
species (using for instance ytterbium cooled in an optical dipole trap, see
refs. 93 and 94, and recently brought into the degenerate regime for a
bosonic isotope (95)) various favourable possibilities can be envisaged.

6. CONCLUSIONS

A novel path to reach deep Fermi degeneracy through sympathetic
cooling with a Bose gas undergoing evaporative cooling in an optical
dipole trap has been proposed. The key feature is that the trapping
frequencies, determining the degree of degeneracy of the dilute gases, are
made different by properly using a second, deconfining beam. Both single-
and crossed-beam configurations have been studied for the four Fermi–
Bose mixtures available with stable alkali fermions. In all cases, a substan-
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tial increase of the Fermi energy is expected maintaining at the same time
the critical temperature for Bose condensation constant or slightly
decreased with respect to a single color optical dipole trap. This decrease of
the critical temperature for Bose condensation is beneficial for maintaining
a precision thermometry in the deep degenerate regime for the Fermi gas,
and it makes also possible the use of species which can hardly reach Bose
condensation. With respect to the routes for fermion cooling currently
under active investigation, our proposal does not necessarily require
enhancement of elastic scattering lengths through Feshbach resonances, a
mechanism often associated to the increase of inelastic processes rates, in
competition with hydrodynamic behaviour of the atomic clouds or forma-
tion of ultracold molecules, (33–36) already present even in nondegenerate
conditions. (96) With respect to the pure Fermi mixtures, it allows instead for
a more precise determination of the temperature and, in particular, of the
BCS-like phase transition temperature below which onset of superfluidity is
expected. (23) Two technical issues still to be addressed in detail are the
degree of control of the laser beams to achieve a common focus, and the
intensity ratio stability between confining and deconfining lasers. In a more
pessimistic scenario, the proposed technique will allow to study the heating
mechanisms preventing further cooling of fermions, in a way similar to the
one proposed in ref. 97, or non-equilibrium phenomena in the ultracold
regime analogous to those already explored for the Bose condensed
gases, (98) or proposed as an interesting alternative to quasi-equilibrium
sympathetic cooling. (99)

APPENDIX. IDEAL BOSE AND FERMI SYSTEMS WITH A FINITE

NUMBER OF PARTICLES IN A HARMONIC POTENTIAL

In this section we review some elementary thermodynamic properties
of noninteracting quantum systems consisting of a finite number of bosonic
or fermionic particles trapped into an external potential. More specifically,
we suppose that the particles of mass m are confined by the anisotropic
harmonic potential

V(x, y, z)=1
2 m(w

2
xx
2+w2yy

2+w2zz
2), (22)

so that the corresponding single-particle energy levels are given by

Enx, ny, nz=(wx 1nx+
1
2
2+(wy 1ny+

1
2
2+(wz 1nz+

1
2
2 , (23)

with nx, ny, nz=0, 1, 2,... .
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In the grand-canonical ensemble, the average number of particles and
the energy of the system are, respectively

N= C
.

nx=0
C
.

ny=0
C
.

nz=0

1

exp 1Enx, ny, nz −m
kBT
2±1

(24)

E= C
.

nx=0
C
.

ny=0
C
.

nz=0

Enx, ny, nz

exp 1Enx, ny, nz −m
kBT
2±1

, (25)

where T is the temperature of the reservoir, m the chemical potential, and
the upper (lower) sign holds for fermions (bosons). Usually, one knows the
temperature T of the reservoir and the number N of particles of the system
so that the chemical potential must be evaluated as a function of N and T.
The value of m(N, T) is determined by solving the nonlinear Eq. (24)
numerically, e.g., by truncating the series in the r.h.s. at a proper order and
controlling the convergence error. (100) Once m(N, T) is known, the energy
E(m(N, T), T) is evaluated in an analogous way by truncating the series in
the r.h.s. of (25).

The computation of the series in (24) or (25) requires the evaluation of
triply nested sums which may be very time consuming. A more favourable
situation, with double or single series to be computed, is obtained in the
presence of symmetries of the external potential. For instance, in the case
of experimental interest in which wx=wy — wxy, Eq. (24) becomes

N= C
.

nxy=0
C
.

nz=0

nxy+1

exp 1Enxy, nz −m
kBT
2±1

, (26)

where the factor nxy+1 represents the degeneracy of the level at energy
Enxy, nz=(wxy(nxy+1)+(wz(nz+

1
2) with nxy, nz=0, 1, 2,... .

The heat capacity of the system at fixed number of particles is

C(N, T)=
dE(N, T)

dT

=
“E
“T
+
“E
“m

“m

“T

=
“E
“T
−
“E
“m

“N
“T
1“N
“m
2−1, (27)
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where we used the constraint dN/dT=“N/“T+(“N/“m)(“m/“T)=0.
The derivatives “N/“T, “N/“m, “E/“T, and “E/“m are obtained by (24)
and (25) and can be evaluated numerically as explained above. As an
example, in Fig. 9 we show the behavior of C(N, T) as a function of T for
different values of the number of particles N. While in the fermion case
C(N, T) is almost independent of N, for bosons the size effect is striking
around the critical temperature.

Finally, we derive the values of the Fermi and Bose degeneracy tem-
peratures reported in (1) and (2). In the case of fermions, for any value of
N and T we have m(N, T) < m(N, T=0) and the Fermi energy is defined
as EF(N)=m(N, T=0). For kBT± (w, a condition well fulfilled in the
experiments, the Fermi energy can be evaluated with the approximation

N= C
nx, ny, nz

Enx, ny, nz < EF

1

4
1
6 E

3
F

(wx(wy(wz
=
E3F
6(3w3F

, (28)

where wF=(wxwywz)1/3. Therefore, kBTF — EF=(6N)1/3 (wF.
In the case of bosons, we separate the occupation of the ground state

from that of the excited ones:

N=N0+Ne

=
1

e
E0 −m(N, T)
kBT −1

+ C
nx, ny, nz
] 0, 0, 0

1

e
Enx, ny, nz

−m(N, T)

kBT −1
, (29)

where m(N, T) < E0 — E0, 0, 0. When TQ 0, we have mQ E0 and N0 QN.
The critical temperature Tc is defined by the condition Ne(m=E0, Tc)=N.
For kBT± (w, we have

Ne(m=E0, Tc) 4 F
.

0
dnx dny dnz

1

e
nx(wx+ny(wy+nz(wz

kBTc −1

=1kBTc
(wB
23 F.

0
dx dy dz

1
ex+y+z−1

=1kBTc
(wB
23 z(3), (30)

where wB=(wxwywz)1/3 and z is the Riemann zeta function. Therefore,
kBTc=(N/z(3))1/3 (wB.
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